2006 AIME II Problem 15

Given that x, y, and z are real numbers that satisfy

x=\sqrt{y^{2}-\frac{1}{16}}+\sqrt{z^{2}-\frac{1}{16}} \\ y=\sqrt{z^{2}-\frac{1}{25}}+\sqrt{x^{2}-\frac{1}{25}} \\ z=\sqrt{x^{2}-\frac{1}{36}}+\sqrt{y^{2}-\frac{1}{36}},

and that x+y+z=m / \sqrt{n}, where m and n are positive integers, and n
is not divisible by the square of any prime, find m+n.