Find the number of positive integers n \leq 600 whose value can be uniquely determined when the values of \left\lfloor\frac{n}{4}\right\rfloor, \left\lfloor\frac{n}{5}\right\rfloor, and \left\lfloor\frac{n}{6}\right\rfloor are given, where \lfloor x\rfloor denotes the greatest integer less than or equal to the real number x.