How many nonnegative integers can be written in the form a_{7} \cdot 3^{7}+a_{6} \cdot 3^{6}+a_{5} \cdot 3^{5}+a_{4} \cdot 3^{4}+a_{3} \cdot 3^{3}+a_{2} \cdot 3^{2}+a_{1} \cdot 3^{1}+a_{0} \cdot 3^{0}, where a_{i} \in\{-1,0,1\} for 0 \leq i \leq 7 ?
Answer Choices
A. 512
B. 729
C. 1094
D. 3281
E. 59,048