As shown in the figure below, a regular dodecahedron (the polyhedron consisting of 12 congruent regular pentagonal faces) floats in space with two horizontal faces. Note that there is a ring of five slanted faces adjacent to the top face, and a ring of five slanted faces adjacent to the bottom face. How many ways are there to move from the top face to the bottom face via a sequence of adjacent faces so that each face is visited at most once and moves are not permitted from the bottom ring to the top ring?

**Answer Choices**

A. 125

B. 250

C. 405

D. 640

E. 810