There exists a unique strictly increasing sequence of nonnegative integers a_{1}<a_{2}<\cdots<a_{k} such that
\dfrac{2^{289}+1}{2^{17}+1}=2^{a_{1}}+2^{a_{2}}+\cdots+2^{a_{k}}
What is k ?
Answer Choices
A. 117
B. 136
C. 137
D. 273
E. 306
There exists a unique strictly increasing sequence of nonnegative integers a_{1}<a_{2}<\cdots<a_{k} such that
\dfrac{2^{289}+1}{2^{17}+1}=2^{a_{1}}+2^{a_{2}}+\cdots+2^{a_{k}}
What is k ?
Answer Choices
A. 117
B. 136
C. 137
D. 273
E. 306