For how many positive integers n \leq 1000 is

\left\lfloor\dfrac{998}{n}\right\rfloor+\left\lfloor\dfrac{999}{n}\right\rfloor+\left\lfloor\dfrac{1000}{n}\right\rfloor

not divisible by 3 ? (Recall that \lfloor x\rfloor is the greatest integer less than or equal to x.)

**Answer Choices**

A. 22

B. 23

C. 24

D. 25

E. 26