Triangle O A B has O=(0,0), B=(5,0), and A in the first quadrant. In addition, \angle A B O=90^{\circ} and \angle A O B=30^{\circ}. Suppose that \overline{O A} is rotated 90^{\circ} counterclockwise about O. What are the coordinates of the image of A ?

**Answer Choices**

A. \left(-\dfrac{10}{3} \sqrt{3}, 5\right)

B. \left(-\dfrac{5}{3} \sqrt{3}, 5\right)

C. (\sqrt{3}, 5)

D. \left(\dfrac{5}{3} \sqrt{3}, 5\right)

E. \left(\dfrac{10}{3} \sqrt{3}, 5\right)