For every real number x, let \lfloor x\rfloor denote the greatest integer not exceeding x, and let
f(x)=\lfloor x\rfloor\left(2014^{x-\lfloor x\rfloor}-1\right) .
The set of all numbers x such that 1 \leq x<2014 and f(x) \leq 1 is a union of disjoint intervals. What is the sum of the lengths of those intervals?
Answer Choices
A. 1
B. \dfrac{\log 2015}{\log 2014}
C. \dfrac{\log 2014}{\log 2013}
D. \dfrac{2014}{2013}
E. 2014^{\dfrac{1}{2014}}