For every integer n \geq 2, let pow (n) be the largest power of the largest prime that divides n. For example pow (144)=\operatorname{pow}\left(2^{4} \cdot 3^{2}\right)=3^{2}. What is the largest integer m such that 2010^{m} divides
\prod_{n=2}^{5300} \operatorname{pow}(n) ?
Answer Choices
A. 74
B. 75
C. 76
D. 77
E. 78