Finitely many cards are placed in two stacks, with more cards in the left stack than the right. Each card has one or more distinct names written on it, although different cards may share some names. For each name, we define a “shuffle” by moving every card that has this name written on it to the opposite stack. Prove that it is always possible to end up with more cards in the right stack by picking several distinct names, and doing in turn the shuffle corresponding to each name.