PUMaC 2015 Individual B Problem 3

For an odd prime number p, let S denote the following sum taken modulo p:

S \equiv \frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{(p-2) \cdot(p-1)} \equiv \sum_{i=1}^{\frac{p-1}{2}} \frac{1}{(2 i-1) \cdot 2 i} \quad(\bmod p)

Prove that p^{2} \mid 2^{p}-2 if and only if S \equiv 0(\bmod p).