For a bijective function g: \mathbb{R} \rightarrow \mathbb{R}, we say that a function f: \mathbb{R} \rightarrow \mathbb{R} is its superinverse if it satisfies the following identity (f \circ g)(x)=g^{-1}(x), where g^{-1} is the inverse of g. Given g(x)=x^{3}+9 x^{2}+27 x+81 and f is its superinverse, find |f(-289)|.